Identification

Title
Using a Bayesian estimator to combine information from a cluster analysis and r…
Abstract

In Germany, a county-resolution data set that consists of 35 land-use and animal-stock categories has been used extensively to assess the impact of agriculture on the environment. However, because such environmental effects as emission or nutrient surplus depend on the location, even a county resolution might produce misleading results. The aim of this article is to propose a Bayesian approach which combines two sorts of information, with one being treated as defining the prior and the other the data to form a posterior, used to estimate a data set at a municipality resolution. We define the joint prior density function based on (i) remote sensing data, thus accounting for differences in county data and missing data at the municipality level, and (ii) the results of a cluster analysis that was previously applied to the micro-census, whereas the data are defined by official statistics at the county level. This approach results in a fairly accurate data set at the municipality level. The results, using the proposed method, are validated by the national research data centre by comparing the estimates to actual observations. The test statistics presented here demonstrate that the proposed approach adequately estimates the production activities.

License
Not Specified
+ The original author did not specify a license.

Publication Date
Dec. 21, 2021, 3:50 p.m.
Category
Farming
Rearing of animals and/or cultivation of plants. Examples: agriculture, irrigation, aquaculture, plantations, herding, pests and diseases affecting crops and livestock.
Regions
Global
Approved
Yes
Published
Yes
Featured
No
Group
Agraratlas
DOI
10.1080/13658816.2014.897348
Attribution
Alexander Gocht & Norbert Röder (2014) Using a Bayesian estimator to combine information from a cluster analysis and remote sensing data to estimate high-resolution data for agricultural production in Germany, International Journal of Geographical Information Science, 28:9, 1744-1764, DOI: 10.1080/13658816.2014.897348
Responsible

Name
Alexander Gocht (gocht)
email
alexander.gocht@thuenen.de
Position
Wissenschaftler
Organization
Thünen-Institut
Location
38116 Braunschweig DEU
Voice
None
Fax
None
Keywords
ldap
Information

Identification Image
Spatial Extent
---
Projection System
4326
Extension x0
3277167.5
Extension x1
3924737.5
Extension y0
5233180.5
Extension y1
6107773.5
Features

Restrictions
otherRestrictions
Language
English
Supplemental Information

Keine Information angegeben

Contact Points

Name
Alexander Gocht (gocht)
email
alexander.gocht@thuenen.de
Position
Wissenschaftler
Organization
Thünen-Institut
Location
38116 Braunschweig DEU
Voice
None
Fax
None
Keywords
ldap

References

Link Online
/catalogue/#/document/45
Metadata Page
/catalogue/#/document/45/metadata_detail

Metadata Author

Name
Open Data Beauftragter (opendata@thuenen.de)
email
opendata@thuenen.de
Position
Open-Data Beauftragter
Organization
Thünen-Institut Zentrum für Informationsmanagement
Location
Thünen-Institut 38116 Braunschweig DEU
Voice
None
Fax
None